Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.130
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621969

RESUMO

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Assuntos
Ácido Glutâmico , Baço , Camundongos , Masculino , Animais , Sêmen , Glutamina , Ácido Aspártico , Metabolômica/métodos , Fígado/metabolismo , Alanina/metabolismo , Amino Açúcares/metabolismo , Água/metabolismo , Nucleotídeos/metabolismo , Purinas/metabolismo , Açúcares , Cromatografia Líquida de Alta Pressão , Biomarcadores/metabolismo
2.
J Agric Food Chem ; 72(14): 8039-8051, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545740

RESUMO

d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.


Assuntos
Aminoácidos , Corynebacterium glutamicum , Aminoácidos/metabolismo , Fermentação , Alanina/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Glucose/metabolismo
3.
AJNR Am J Neuroradiol ; 45(4): 461-467, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453417

RESUMO

BACKGROUND AND PURPOSE: Due to high chemical shift displacement, challenges emerge at ultra-high fields when measuring metabolites using 1H-MRS. Our goal was to investigate how well the high SNR and high bandwidth spin-echo (HISE) technique perform at 5T for detecting target metabolites in brain tumors. MATERIALS AND METHODS: Twenty-six subjects suspected of having brain tumors were enrolled. HISE and point-resolved spectroscopy (PRESS) single-voxel spectroscopy scans were collected with a 5T clinical scanner with an intermediate TE (TE = 144 ms). The main metabolites, including total NAA, Cr, and total Cho, were accessed and compared between HISE and PRESS using a paired Student t test, with full width at half maximum and SNR as covariates. The detection rate of specific metabolites, including lactate, alanine, and lipid, and subjective spectral quality were accessed and compared between HISE and PRESS. RESULTS: Twenty-three pathologically confirmed brain tumors were included. Only the full width at half maximum for total NAA was significantly lower with HISE than with PRESS (P < .05). HISE showed a significantly higher SNR for total NAA, Cr, and total Cho compared with PRESS (P < .05). Lactate was detected in 21 of the 23 cases using HISE, but in only 4 cases using PRESS. HISE detected alanine in 8 of 9 meningiomas, whereas PRESS detected alanine in just 3 meningiomas. PRESS found lipid in more cases than HISE, while HISE outperformed PRESS in terms of subjective spectral quality. CONCLUSIONS: HISE outperformed the clinical standard PRESS technique in detecting target metabolites of brain tumors at 5T, particularly lactate and alanine.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Humanos , Espectroscopia de Ressonância Magnética/métodos , Meningioma/diagnóstico por imagem , Reprodutibilidade dos Testes , Neoplasias Encefálicas/metabolismo , Ácido Láctico/metabolismo , Alanina/metabolismo , Lipídeos , Encéfalo/metabolismo
4.
Hypertension ; 81(5): 1044-1054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38465625

RESUMO

BACKGROUND: Potassium (K+)-deficient diets, typical of modern processed foods, increase blood pressure (BP) and NaCl sensitivity. A K+-dependent signaling pathway in the kidney distal convoluted tubule, coined the K+ switch, that couples extracellular K+ sensing to activation of the thiazide-sensitive NaCl cotransporter (NCC) and NaCl retention has been implicated, but causality has not been established. METHODS: To test the hypothesis that small, physiological changes in plasma K+ (PK+) are translated to BP through the switch pathway, a genetic approach was used to activate the downstream switch kinase, SPAK (SPS1-related proline/alanine-rich kinase), within the distal convoluted tubule. The CA-SPAK (constitutively active SPS1-related proline/alanine-rich kinase mice) were compared with control mice over a 4-day PK+ titration (3.8-5.1 mmol) induced by changes in dietary K+. Arterial BP was monitored using radiotelemetry, and renal function measurements, NCC abundance, phosphorylation, and activity were made. RESULTS: As PK+ decreased in control mice, BP progressively increased and became sensitive to dietary NaCl and hydrochlorothiazide, coincident with increased NCC phosphorylation and urinary sodium retention. By contrast, BP in CA-SPAK mice was elevated, resistant to the PK+ titration, and sensitive to hydrochlorothiazide and salt at all PK+ levels, concomitant with sustained and elevated urinary sodium retention and NCC phosphorylation and activity. Thus, genetically locking the switch on drives NaCl sensitivity and prevents the response of BP to potassium. CONCLUSIONS: Low K+, common in modern ultraprocessed diets, presses the K+-switch pathway to turn on NCC activity, increasing sodium retention, BP, and salt sensitivity.


Assuntos
Potássio , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potássio na Dieta/metabolismo , Pressão Sanguínea/fisiologia , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Transdução de Sinais , Fosforilação , Túbulos Renais Distais/metabolismo , Hidroclorotiazida , Sódio/metabolismo , Alanina/metabolismo , Prolina/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396924

RESUMO

Diabetes is recognized as a risk factor for cognitive decline, but the underlying mechanisms remain elusive. We aimed to identify the metabolic pathways altered in diabetes-associated cognitive decline (DACD) using untargeted metabolomics. We conducted liquid chromatography-mass spectrometry-based untargeted metabolomics to profile serum metabolite levels in 100 patients with type 2 diabetes (T2D) (54 without and 46 with DACD). Multivariate statistical tools were used to identify the differentially expressed metabolites (DEMs), and enrichment and pathways analyses were used to identify the signaling pathways associated with the DEMs. The receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of a set of metabolites. We identified twenty DEMs, seven up- and thirteen downregulated in the DACD vs. DM group. Chemometric analysis revealed distinct clustering between the two groups. Metabolite set enrichment analysis found significant enrichment in various metabolite sets, including galactose metabolism, arginine and unsaturated fatty acid biosynthesis, citrate cycle, fructose and mannose, alanine, aspartate, and glutamate metabolism. Pathway analysis identified six significantly altered pathways, including arginine and unsaturated fatty acid biosynthesis, and the metabolism of the citrate cycle, alanine, aspartate, glutamate, a-linolenic acid, and glycerophospholipids. Classifier models with AUC-ROC > 90% were developed using individual metabolites or a combination of individual metabolites and metabolite ratios. Our study provides evidence of perturbations in multiple metabolic pathways in patients with DACD. The distinct DEMs identified in this study hold promise as diagnostic biomarkers for DACD patients.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estudos Transversais , Metaboloma , Ácido Aspártico/metabolismo , Metabolômica , Alanina/metabolismo , Arginina/metabolismo , Citratos , Glutamatos/metabolismo , Ácidos Graxos Insaturados
6.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398632

RESUMO

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/metabolismo , Ligação Proteica , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade/metabolismo , Alanina/metabolismo
7.
Am J Physiol Endocrinol Metab ; 326(4): E515-E527, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353639

RESUMO

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.


Assuntos
Gluconeogênese , Hipoglicemia , Camundongos , Animais , Gluconeogênese/genética , Ácido Pirúvico/metabolismo , Tolerância ao Exercício , Fígado/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Lactatos/metabolismo , Alanina/metabolismo , Aminoácidos/metabolismo
8.
Biosystems ; 237: 105152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346553

RESUMO

Alanyl-tRNA synthetase (AlaRS) incorrectly recognizes both a slightly smaller glycine and a slightly larger serine in addition to alanine, and the probability of incorrect identification is extremely low at 1/300 and 1/170, respectively. Alanine is the second smallest amino acid after glycine; however, the mechanism by which AlaRS specifically identifies small differences in side chains with high accuracy remains unknown. In this study, using a malachite green assay, we aimed to elucidate the alanine recognition mechanism of a fragment (AlaRS368N) containing only the amino acid activation domain of Escherichia coli AlaRS. This method quantifies monophosphate by decomposing pyrophosphate generated during aminoacyl-AMP production. AlaRS368N produced far more pyrophosphate when glycine or serine was used as a substrate than when alanine was used. Among several mutants tested, an AlaRS mutant in which the widely conserved aspartic acid at the 235th position (D235) near the active center was replaced with glutamic acid (D235E) increased pyrophosphate release for the alanine substrate, compared to that from glycine and serine. These results suggested that D235 is optimal for AlaRS to specifically recognize alanine. Alanylation activities of an RNA minihelix by the mutants of valine at the 214th position (V214) of another fragment (AlaRS442N), which is the smallest AlaRS with alanine charging activity, suggest the existence of the van der Waals-like interaction between the side chain of V214 and the methyl group of the alanine substrate.


Assuntos
Alanina-tRNA Ligase , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Alanina/genética , Alanina/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Glicina , Serina/genética , Serina/metabolismo
9.
Environ Toxicol ; 39(5): 2732-2740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251951

RESUMO

BACKGROUND: Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS: Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS: Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 µM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION: In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Linhagem Celular Tumoral , Regulação para Baixo , Metaloproteinase 9 da Matriz/metabolismo , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Invasividade Neoplásica , Movimento Celular
10.
Cell Chem Biol ; 31(4): 669-682.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38266648

RESUMO

Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. The conserved whiB7 stress response reduces the effectiveness of antibiotic therapy by activating several intrinsic antibiotic resistance mechanisms. Despite our comprehensive biochemical understanding of WhiB7, the complex set of signals that induce whiB7 expression remain less clear. We employed a reporter-based, genome-wide CRISPRi epistasis screen to identify a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 expression. We show that whiB7 expression is determined by the amino acid composition of the 5' regulatory uORF, thereby allowing whiB7 to sense amino acid starvation. Although deprivation of many amino acids can induce whiB7, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. These findings describe a metabolic function for whiB7 and help explain its evolutionary conservation across mycobacterial species occupying diverse ecological niches.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Fatores de Transcrição/metabolismo , Alanina/genética , Alanina/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium/genética , Mycobacterium/metabolismo , Resistência Microbiana a Medicamentos , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo
11.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197261

RESUMO

The olfactory epithelium of fish is - of necessity - in intimate contact with the surrounding water. In euryhaline fish, movement from seawater to freshwater (and vice versa) exposes the epithelium to massive changes in salinity and ionic concentrations. How does the olfactory system function in the face of such changes? The current study compared olfactory sensitivity in seawater- (35‰) and brackish water-adapted seabass (5‰) using extracellular multi-unit recording from the olfactory nerve. Seawater-adapted bass had higher olfactory sensitivity to amino acid odorants when delivered in seawater than in freshwater. Conversely, brackish water-adapted bass had largely similar sensitivities to the same odorants when delivered in seawater or freshwater, although sensitivity was still slightly higher in seawater. The olfactory system of seawater-adapted bass was sensitive to decreases in external [Ca2+], whereas brackish water-adapted bass responded to increases in [Ca2+]; both seawater- and brackish water-adapted bass responded to increases in external [Na+] but the sensitivity was markedly higher in brackish water-adapted bass. In seawater-adapted bass, olfactory sensitivity to l-alanine depended on external Ca2+ ions, but not Na+; brackish water-adapted bass did respond to l-alanine in the absence of Ca2+, albeit with lower sensitivity, whereas sensitivity was unaffected by removal of Na+ ions. A possible adaptation of the olfactory epithelium was the higher number of mucous cells in brackish water-adapted bass. The olfactory system of seabass is able to adapt to low salinities, but this is not immediate; further studies are needed to identify the processes involved.


Assuntos
Bass , Animais , Bass/fisiologia , Salinidade , Cálcio/metabolismo , Água do Mar/química , Água/metabolismo , Sódio/metabolismo , Alanina/metabolismo , Brânquias/metabolismo
12.
IUCrJ ; 11(Pt 2): 133-139, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277167

RESUMO

Vancomycin is a glycopeptide antibiotic that for decades has been a mainstay of treatment for persistent bacterial infections. However, the spread of antibiotic resistance threatens its continued utility. In particular, vancomycin-resistant enterococci (VRE) have become a pressing clinical challenge. Vancomycin acts by binding and sequestering the intermediate Lipid II in cell-wall biosynthesis, specifically recognizing a D-alanine-D-alanine dipeptide motif within the Lipid II molecule. VRE achieve resistance by remodeling this motif to either D-alanine-D-lactate or D-alanine-D-serine; the former substitution essentially abolishes recognition by vancomycin of Lipid II, whereas the latter reduces the affinity of the antibiotic by roughly one order of magnitude. The complex of vancomycin bound to D-alanine-D-serine has been crystallized, and its 1.20 ŠX-ray crystal structure is presented here. This structure reveals that the D-alanine-D-serine ligand is bound in essentially the same position and same pose as the native D-alanine-D-alanine ligand. The serine-containing ligand appears to be slightly too large to be comfortably accommodated in this way, suggesting one possible contribution to the reduced binding affinity. In addition, two flexible hydroxyl groups - one from the serine side chain of the ligand, and the other from a glucose sugar on the antibiotic - are locked into single conformations in the complex, which is likely to contribute an unfavorable entropic component to the recognition of the serine-containing ligand.


Assuntos
Alanina , Vancomicina , Vancomicina/farmacologia , Alanina/metabolismo , Ligantes , Antibacterianos/farmacologia , Glicopeptídeos
13.
Animal ; 18(2): 101049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215677

RESUMO

Our understanding of metabolic alterations triggered by heat stress is incomplete, which limits the designing of nutritional strategies to mitigate negative productive and health effects. Thus, this study aimed to explore the metabolic responses of heat-stressed dairy cows to dietary supplementation with vitamin D3/Ca and vitamin E/Se. Twelve multiparous Holstein cows were enrolled in a split-plot Latin square design with two distinct vitamin E/Se supplementation levels, either at a low (ESe-, n = 6, 11.1 IU/kg vitamin E and 0.55 mg/kg Se) or a high dose (ESe+, n = 6 223 IU/kg vitamin E and 1.8 mg/kg Se) as the main plot. Treatment subplots, arranged in a replicated 3 × 3 Latin square design, comprised heat challenge (Temperature Humidity Index, THI: 72.0-82.0) supplemented with different levels of vitamin D3/Ca: either low (HS/DCa-, 1 012 IU/kg and 0.73%, respectively) or high (HS/DCa+, 3 764 IU/kg and 0.97%, respectively), and a pair-fed control group in thermoneutrality (THI = 61.0-64.0) receiving the low dose of vitamin D3/Ca (TN). The liquid chromatography-mass spectrometry-based metabolome profile was determined in blood plasma and milk sampled at the beginning (day 0) and end (day 14) of each experimental period. The results were analyzed for the effect of (1) TN vs. HS/ESe-/DCa-, and (2) the vitamin E/Se and vitamin D3/Ca supplementation. No group or group × day effects were detected in the plasma metabolome (false discovery rate, FDR > 0.05), except for triglyceride 52:2 being higher (FDR = 0.03) on day 0 than 14. Taurine, creatinine and butyryl-carnitine showed group × day interactions in the milk metabolome (FDR ≤ 0.05) as creatinine (+22%) and butyryl-carnitine (+190%) were increased (P < 0.01) on day 14, and taurine was decreased (-65%, P < 0.01) on day 14 in the heat stress (HS) cows, compared with day 0. Most compounds were unaffected by vitamin E/Se or vitamin D3/Ca supplementation level or their interaction (FDR > 0.05) in plasma and milk, except for milk alanine which was lower (-69%, FDR = 0.03) in the E/Se+ groups, compared with E/Se-. Our results indicated that HS triggered more prominent changes in the milk than in the plasma metabolome, with consistent results in milk suggesting increased muscle catabolism, as reflected by increased creatinine, alanine and citrulline levels. Supplementing with high levels of vitamin E/Se or vitamin D3/Ca or their combination did not appear to affect the metabolic remodeling triggered by HS.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Creatinina/análise , Creatinina/metabolismo , Creatinina/farmacologia , Dieta/veterinária , Temperatura Alta , Suplementos Nutricionais/análise , Resposta ao Choque Térmico , Vitamina E , Carnitina/metabolismo , Alanina/análise , Alanina/metabolismo , Alanina/farmacologia , Aminoácidos/metabolismo , Vitamina D/metabolismo
14.
Int J Food Microbiol ; 410: 110495, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37980813

RESUMO

Aspergilli can be used to produce food but can spoil it as well. Both food production and spoilage are initiated by germination of the conidia of these fungi that have been introduced by inoculation and contamination, respectively. Germination of these spores includes activation, swelling, establishment of cell polarity, and formation of a germ tube. So far, only quantitative single-species germination studies of fungal spores have been performed. Here, spore germination of the food spoilage fungus Aspergillus niger was studied quantitatively in mono-culture or when mixed with other food-relevant aspergilli (Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus, and Aspergillus oryzae). In the presence of the germination inducing amino acids proline or alanine, but not in the case of the lowly inducing amino acid arginine, the incidence of swelling and germ tube formation was reduced when 35,000 extra conidia of Aspergillus niger were added to wells containing 5000 of these spores. Adding 35,000 spores of one of the other aspergilli also did not have an effect on germination in the presence of arginine, but the germination inhibition was stronger when compared to the extra A. niger spores in the case of alanine. A similar effect was obtained with proline. Together, results show that the germination of A. niger conidia is impacted by the density of its own spores and that of other aspergilli under favorable nutritional conditions. These results increase our understanding of food spoilage by fungi and can be used to optimize food production with fungi.


Assuntos
Alanina , Aspergillus niger , Esporos Fúngicos , Alanina/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Arginina/farmacologia
15.
J Nutr ; 154(2): 505-515, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141773

RESUMO

BACKGROUND: Continuous feeding does not elicit an optimal anabolic response in skeletal muscle but is required for some preterm infants. We reported previously that intermittent intravenous pulses of leucine (Leu; 800 µmol Leu·kg-1·h-1 every 4 h) to continuously fed pigs born at term promoted mechanistic target of rapamycin complex 1 (mTORC1) activation and protein synthesis in skeletal muscle. OBJECTIVES: The aim was to determine the extent to which intravenous Leu pulses activate mTORC1 and enhance protein synthesis in the skeletal muscle of continuously fed pigs born preterm. METHODS: Pigs delivered 10 d preterm was advanced to full oral feeding >4 d and then assigned to 1 of the following 4 treatments for 28 h: 1) ALA (continuous feeding; pulsed with 800 µmol alanine·kg-1·h-1 every 4 h; n = 8); 2) L1× (continuous feeding; pulsed with 800 µmol Leu·kg-1·h-1 every 4 h; n = 7); 3) L2× (continuous feeding; pulsed with 1600 µmol Leu·kg-1·h-1 every 4 h; n = 8); and 4) INT (intermittent feeding every 4 h; supplied with 800 µmol alanine·kg-1 per feeding; n = 7). Muscle protein synthesis rates were determined with L-[2H5-ring]Phenylalanine. The activation of insulin, amino acid, and translation initiation signaling pathways were assessed by Western blot. RESULTS: Peak plasma Leu concentrations were 134% and 420% greater in the L2× compared to the L1× and ALA groups, respectively (P < 0.01). Protein synthesis was greater in the L2× than in the ALA and L1× groups in both the longissimus dorsi and gastrocnemius muscles (P < 0.05) but not different from the INT group (P > 0.10). Amino acid signaling upstream and translation initiation signaling downstream of mTORC1 largely corresponded to the differences in protein synthesis. CONCLUSIONS: Intravenous Leu pulses potentiate mTORC1 activity and protein synthesis in the skeletal muscles of continuously fed preterm pigs, but the amount required is greater than in pigs born at term.


Assuntos
Nutrição Enteral , Recém-Nascido Prematuro , Animais , Suínos , Recém-Nascido , Humanos , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais Recém-Nascidos , Músculo Esquelético/metabolismo , Aminoácidos/metabolismo , Alanina/metabolismo
16.
Magn Reson Med ; 91(4): 1625-1636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115605

RESUMO

PURPOSE: Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS: Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS: Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION: HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Metionina/metabolismo , Colina/metabolismo , Ácido Pirúvico/metabolismo , Ácido Aspártico/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Ratos Wistar , Fígado/metabolismo , Racemetionina/metabolismo , Dieta , Triglicerídeos , Alanina/metabolismo , Lactatos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Biochem Biophys Res Commun ; 694: 149383, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38150918

RESUMO

Metformin is currently a strong candidate antitumor agent for multiple cancers, and has the potential to inhibit cancer cell viability, growth, and proliferation. Metabolic reprogramming is a critical feature of cancer cells. However, the effects of metformin which targets glucose metabolism on HepG2 cancer cells remain unclear. In this study, to explore the effects of metformin on glucose metabolism in HepG2 cells, we conducted real-time metabolomic monitoring of live HepG2 cells treated with metformin using 13C in-cell NMR spectroscopy. Metabolic tracing with U-13C6-glucose revealed that metformin significantly increased the production of 13C-G3P and 13C-glycerol, which were reported to attenuate liver cancer development, but decreased the production of potential oncogenesis-supportive metabolites, including 13C-lactate, 13C-alanine, 13C-glycine, and 13C-glutamate. Moreover, the expression levels of enzymes associated with the measured metabolites were carried out. The results showed that the levels of ALT1, MCT4, GPD2 and MPC1 were greatly reduced, which were consistent with the changes of measured metabolites in 13C in-cell NMR spectroscopy. Overall, our approach directly provides fundamental insights into the effects of metformin on glucose metabolism in live HepG2 cells, and highlights the potential mechanism of metformin, including the increase in production of G3P and glycerol derived from glucose, as well as the inhibition of glucose incorporation into lactate, alanine, glutamate, and glycine.


Assuntos
Metformina , Humanos , Metformina/farmacologia , Células Hep G2 , Glicerol , Espectroscopia de Ressonância Magnética , Glucose/metabolismo , Alanina/metabolismo , Ácido Glutâmico , Glicina , Lactatos
18.
Ecotoxicol Environ Saf ; 270: 115870, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159340

RESUMO

Chiral pesticides that are still commercialized and incorporated into the environment as racemic mixtures of enantiomers require evaluation of the enantioselectivity of their biological activity and environmental fate processes for a better prediction of their field efficacy and environmental risks. In this work, we successfully separated the enantiomers of the chiral herbicide ethofumesate (ETFM), determined their absolute configuration, and characterized their herbicidal activity as well as their adsorption, degradation, enantiomerization, and leaching in Mediterranean agricultural soils. While the herbicidal activity of R-ethofumesate to the sensitive species Portulaca grandiflora was greater than that of S-ethofumesate, the adsorption, degradation, and leaching of the herbicide showed negligible enantioselectivity and enantiomer interconversion did not occur in soils. The adsorption of both enantiomers showed a positive correlation with the soil organic carbon content (r = 0.856, P = 0.015), and their degradation in soils occurred slowly (DT50 > 60 days) and at similar rates independent of their application as individual enantiomers or as a racemic mixture of enantiomers. The addition of three highly adsorptive materials to a scarcely adsorptive soil increased the adsorption of the enantiomers of ETFM and delayed their degradation without affecting the non-enantioselective character of the processes. As a result of their high adsorption capacity, the materials were highly effective in reducing the leaching of both enantiomers of ETFM through soil columns. The results of this work indicate that the application of single-enantiomer ETFM formulations, based on a higher herbicidal activity or a lower toxicity to non-target organisms of the formulated enantiomer, would reduce considerable exposure risks associated with incorporating into the environment the less favorable enantiomer, as this would show long persistence and high leaching potential in soils similar to its optical isomer.


Assuntos
Benzofuranos , Carvão Vegetal , Fungicidas Industriais , Herbicidas , Mesilatos , Poluentes do Solo , Solo , Estereoisomerismo , Carbono , Fungicidas Industriais/metabolismo , Poluentes do Solo/metabolismo , Alanina/metabolismo , Biodegradação Ambiental
19.
Magn Reson Chem ; 62(2): 84-93, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38098198

RESUMO

Pyruvate, an end product of glycolysis, is a master fuel for cellular energy. A portion of cytosolic pyruvate is transported into mitochondria, while the remaining portion is converted reversibly into lactate and alanine. It is suggested that cytosolic lactate and alanine are transported and metabolized inside mitochondria. However, such a mechanism continues to be a topic of intense debate and investigation. As a part of gaining insight into the metabolic fate of the cytosolic lactate and alanine; in this study, the metabolism of mouse skeletal myoblast cells (C2C12) and their isolated mitochondria was probed utilizing stable isotope-labeled forms of the three glycolysis products, viz. [3-13 C1 ]pyruvate, [3-13 C1 ]lactate, and [3-13 C1 ]alanine, as substrates. The uptake and metabolism of each substrate was monitored, separately, in real-time using 1 H-13 C 2D nuclear magnetic resonance (NMR) spectroscopy. The dynamic variation of the levels of the substrates and their metabolic products were quantitated as a function of time. The results demonstrate that all three substrates were transported into mitochondria, and each substrate was metabolized to form the other two metabolites, reversibly. These results provide direct evidence for intracellular pyruvate-lactate-alanine cycling, in which lactate and alanine produced by the cytosolic pyruvate are transported into mitochondria and converted back to pyruvate. Such a mechanism suggests a role for lactate and alanine to replenish mitochondrial pyruvate, the primary source for adenosine triphosphate (ATP) synthesis through oxidative phosphorylation and the electron transport chain. The results highlight the potential of real-time NMR spectroscopy for gaining new insights into cellular and subcellular functions.


Assuntos
Alanina , Ácido Pirúvico , Animais , Camundongos , Alanina/metabolismo , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Espectroscopia de Ressonância Magnética/métodos
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1496-1503, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994130

RESUMO

OBJECTIVE: To analyze the difference in the gene expression, amino acid and carnitine levels in the cervical secretions between the endometria of pre-receptive and receptive stages, with an aim to provide clues for identifying new molecular markers for endometrial receptivity. METHODS: Fifty nine infertile women treated at the Department of Reproductive Medicine of Linyi People's Hospital from January 6, 2020 to January 31, 2022 were selected as as the study subjects, which were matched with 3 pairs (6 cases) of infertile women preparing for embryo transfer based on factors such as age, body mass index, and length of infertility. Endometrial tissue samples were collected for gene transcription and expression analysis. Twenty five women who had become pregnant through assisted reproductive technology were selected as the control group, and 28 non-pregnant women receiving ovulation monitoring at the Outpatient Department were enrolled as the case group. Status of endometrial receptivity was determined by ultrasonography. In the former group, endometrial tissues were sampled for sequencing, and GO and KEGG database enrichment analysis of differentially expressed genes was carried out. In the latter group, cervical secretions were collected, and amino acid and carnitine levels were measured by mass spectrometry. Statistical analysis was carried out using rank sum test, t test and chi-square test with SPSS v25.0 software. RESULTS: No difference was found in the clinical data of the patients with regard to age, body mass index, infertility years, AMH, FSH, LH, E2, and type of infertility. Compared with the receptive endometrial tissues, there were 100 significantly up-regulated genes and 191 significantly down-regulated genes in the pre-receptive endometrial tissue, with the most significantly altered ones being HLA-DRB5 and MMP10. The biological processes, molecular functions and pathways enriched by more differentially expressed genes in GO and KEGG were mainly immune regulation, cell adhesion and tryptophan metabolism. Analysis of secretion metabolism also revealed a significant difference in the levels of amino acids and carnitine metabolites between the two groups (P < 0.05), in particular those of Alanine, Valine, 3-hydroxybutyrylcarnitine (C4OH) + malonylcarnitine (C3DC)/captoylcarnitine (C10). CONCLUSION: A significant difference has been discovered in the levels of gene transcription and protein expression in the endometrial tissues from the pre-receptive and receptive stages. The levels of amino acids and carnitine, such as Alanine, Valine, 3-hydroxybutyryl carnitine (C4OH)+malonyl carnitine (C3DC)/caproyl carnitine (C10), may be associated with the receptive status of the endometrium, though this need to be verified with larger samples.


Assuntos
Infertilidade Feminina , Gravidez , Humanos , Feminino , Infertilidade Feminina/genética , Endométrio/metabolismo , Aminoácidos/metabolismo , Expressão Gênica , Carnitina , Alanina/metabolismo , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...